Basic USB Application

Scope

The Universal Serial Bus (USB) has been successfully implemented in most PC systems and is replacing the older parallel and serial ports. For a standard serial port, communications are performed directly by the application running on the computer. In order to be plug-and-play and hot-plug, the USB bus introduces a process that uniquely identifies a device to the Host computer in order for it to learn the capabilities of the device and to load the appropriate driver. This identification process is called enumeration and uses a standard set of commands described in Chapter 9 of the USB specification, "USB Device Framework".

The USB is likely to replace other serial, parallel and game interfaces in PC and peripheral markets. The USB organization defines how devices and interfaces using the class or common capability are to be implemented and how developers of generic adaptative device drivers interact with compliant implementations. Several classes are approved and widely integrated in most popular operating systems: HID (Human Interface Device), MSD (Mass Storage Device), CDC (Communication Device Class), etc.

This application note describes how to make the USB bus appear as an RS-232 interface on the host PC. The source code corresponding to this application note is delivered in the AT91xxx_BasicUSB example in the AT91 library. It includes an application running on an AT91 demonstration board, PC drivers and a simple USB application running on the PC.

AT91 ARM[®] Thumb[®] Microcontrollers

Application Note

6123A-ATARM-16-Sep-04

Applicable Documents

Table 1. Applicable Documents

Owner - Reference	Denomination	
ARM Document Guidelines	Ref ORG00001 Version 1.0, 16-Oct-2002	
USB Specification	Universal Serial Bus Revision 2.0 Specification	
CDC Specification	Class Definition for Communication Devices 1.1	
Common Class Specification	Common Class Base Specification 1.0	

Reference Documents

Table 2. Reference Documents

Owner - Reference	Denomination
USB Device Port (UDP) Programmer Datasheet	Rev. 6083B-12/04
USB Device Port Summary	Rev. 6083AS-05/04
AT91SAM7S64-Datasheet	Rev.6070A-09/04
SAMBA [™] User Guide	Rev. xxxx

USB Enumeration

USB Specification

When a USB device is attached to or removed from the USB, the host uses a process known as bus enumeration to identify and manage the device state changes necessary. When a USB device is attached to a powered port, the following actions are taken:

- The hub to which the USB device is now attached informs the host of the event via a reply on its status change pipe (refer to the Section 11.12.3 of the USB specification for more information). At this point, the USB device is in the powered state and the port to which it is attached is disabled.
- The host determines the exact nature of the change by querying the hub.
- Now that the host knows the port to which the new device has been attached, the host then waits for at least 100ms to allow completion of an insertion process and for power at the device to become stable. The host then issues a port enable and reset command to that port. Refer to Section 7.1.7.5 of the USB specification for sequence of events and timings of connection through device reset.
- The hub performs the required reset processing for that port (see Section 11.5.1.5 of the USB specification). When the reset signal is released, the port has been enabled. The USB device is now in default state and can draw no more than 100 mA from V_{BUS}. All of its registers and states have been reset and it answers to the default address.
- The host assigns a unique address to the USB device, moving the device to the address state.
- Before the USB device receives a unique address, its Default Control Pipe is still
 accessible via the default address. The host reads the device descriptor to
 determine what actual maximum data payload size this USB default pipe can use.

	• The host reads the configuration information from the device by reading each configuration zero to n-1, where n is the number of configurations. This process may take several milliseconds to complete.	
	 Based on the configuration information and how the USB device will be used, the host assigns a configuration value to the device. The device is now in the configured state and all the endpoints in this configuration have taken their described characteristics. The USB device may now draw the amount of V_{BUS} power described in its descriptor for the selected configuration. From the device's point of view, it is now ready for use. 	
	When the USB device is removed, the hub sends a notification to the host. Detachin device disables the port to which it had been attached. Upon receiving the detach ne cation, the host will update its local topological information.	
	The enumeration process is used by the host when a device is attached to the USB bus. This process allows the host to identify and manage the device.	
Device Identification	The host sends standard requests on the default control endpoint in order to identify the device and to load the appropriate driver (Refer to Chapter 9 of the USB Specification for more information). The device answers each request with the corresponding descriptor tables. The descriptor tables contain all the information relating to the device: characteristics of the device and number and characteristics of each configuration, interface and endpoint.	

Figure 1. Enumeration Transfer

Bit in Sing Part (and the light (and the light)) Control (and the light) C	CATE USB Chief Bus and Protocol Analyzer - [data.us	H CATC default]	
Reset 60 282 ms Idie Suspend 257.142 ms Reset 20 000 ms Idie 0 5 GET 0 0 0 5 GET 0 0 GET DESCRIPTOR DEVICE type 0x0000 DEVICE descriptor Reset 15.370 ms Idie 0 SET 0 0 SET 15.370 ms Idie 0 SET 0 0 SET 0 0 SET 15.370 ms Idie 0 SET 0 0 SET 0 <t< th=""><th>Call Call and Second Generate Report Search Beer</th><th>Neday (94) Neday (94)</th><th></th></t<>	Call Call and Second Generate Report Search Beer	Neday (94) Neday (94)	
Freed SU 28J ms 4506 Suspend 257 142 ms Resol. 20 000 ms Idle 1059 Transfer E Control ADDR 0 S GET 0 GET_DESCRIPTOR Device type 0 S GET 0 GET_DESCRIPTOR DEVICE type Descriptors Resol 15 370 ms Idle 6230 Imme Encode Imme Transfer E Control ADDR Encode Imme 1 S SET 0 0 SET_ADDRESS New address 2 9.996 ms Transfer E Control ADDR Encode Encode Encode 2 S GET 2 0 GET_DESCRIPTOR Device type Ductority Encode 3 S GET 2 0 GET_DESCRIPTOR CONFIGURATION type Ductority Time 3 S GET 2 0 GET_DESCRIPTOR CONFIGURATION type Ductority Time 3 S GET 2 0<			
Suspend 257.142 ms Reset 20.000 ms Idle 1055 Transfac E Centrol ADOR DIDE EFfequest wValue Windex Descriptors 0 S GET 0 0 GET_DESCRIPTOR DEVICE type 0x0000 DEVICE descriptor Reset 15.370 ms Idle 6230 Transfac E Centrol ADOR DIDE EFfequest WValue Discriptors Time 1 S SET 0 SET_ADDRESS, New address 2 996 ms Time Segregation Segregation Segregation Time 2 S GET 2 0 GET_DESCRIPTOR DEVICE type 0x000 DEVICE descriptor 5 999 ms Transfac E Centrol ADOR EVEQuest WValue Endedscriptor 5 999 ms Transfac E Centrol ADOR EVEQuest WValue Endedscriptor 5 999 ms Transfac E Centrol ADOR EVEQuest WValue Endedscriptor 1 4 999 ms Transfac E	Reset.	60.282 ms 4506	
20.000 ms Idea 10.000 ms Idea 0.000 ms Descriptors Descriptors Descriptors 0.000 ms Idea 0.000 ms Descriptors Descriptors DESCRIPTOR DEVICE type 0x0000 Descriptors Trainder If control ADDR ENDP Descriptors Time Trainder If control ADDR ENDP Descriptors Time Trainder If control ADDR ENDP Descriptors Time Trainder If control ADDR ENDP Descriptor Time Trainder If control ADDR ENDP Descriptor Time Trainder If control ADDR ENDP Descriptor Time Trainder ADDR ENDP	Suspend	257.142 ms	
Transfer Control ADDR Entrop Effequent w/Value windex Descriptors 0 S GET 0 0 GET_DESCRIPTOR DEVICE type 0x0000 DEVICE descriptor Reset 15.370 ms Idia 1 S SET 0 0 SET_ADDRESS New address 2 9.996 ms Transfer Control ADDR ENDP Endequest wValue Windex Descriptors Time 2 S GET 2 0 GET_DESCRIPTOR DEVICE type 0x0000 DEVICE descriptor 5 999 ms Transfer Control ADDR ENDP Endequest wValue Windex Descriptors Time 3 S GET 2 0 GET_DESCRIPTOR CONFIGURATION type 0x0000 CONFIGURATION descriptor Time 3 S GET 2 0 GET_DESCRIPTOR CONFIGURATION type 0x0000 Time 4 999 ms Transfer Control ADDR ENDP Endeutet <td>Reset.</td> <td>20.000 ms</td> <td></td>	Reset.	20.000 ms	
Reset 15.370 ms Idia 6230 Transfer Control ADCR Entern DRequest WValue Time 1 S SET 0 SET_ADDRESS New address 2 9.996 ms Transfer Control ADCR Entern Control ADCR Entern 2 S GET 2 0 GET_DESCRIPTOR DEVICE type 0x0000 DEVICE descriptor 5.999 ms Transfer Control ADCR Entern SET_DESCRIPTOR CONFIGURATION type 0x0000 CONFIGURATION descriptor 4.999 ms Transfer Control ADCR Entern SET_DESCRIPTOR CONFIGURATION type 0x0000 CONFIGURATION descriptor 4.999 ms Transfer Control ADCR Entern SET_DESCRIPTOR CONFIGURATION type 0x0000 Total descriptors Time 4 S GET 2 0 GET_DESCRIPTOR CONFIGURATION type 0x0000 Total descriptors Time 4 S GET 2 0 GET_DESCRIPTOR CONFIGURATION type 0x0000 Total descriptors Time 5 S<	Transfer E Control ADDR END	BRequest wValue winder Descriptors GET DESCRIPTOR DEVICE type 0x0000 DEVICE descriptor	
Transfer Control ADOR EVEN WValue Time 2 S SET 0 0 SET_ADDRESS New address 2 9.998 ms 2 S GET 2 0 GET_DESCRIPTOR Device type 0x0000 Device descriptors Time 2 S GET 2 0 GET_DESCRIPTOR Device type 0x0000 Device descriptor 5 999 ms 7 S GET 2 0 GET_DESCRIPTOR CONFIGURATION type 0x0000 CONFIGURATION descriptors Time 3 S GET 2 0 GET_DESCRIPTOR CONFIGURATION type 0x0000 CONFIGURATION descriptors Time 3 S GET 2 0 GET_DESCRIPTOR CONFIGURATION type 0x0000 CONFIGURATION descriptors Time 4 S GET 2 0 GET_DESCRIPTOR CONFIGURATION type 0x0000 10 descriptors Time 5 S GET 2 0 GET_DESCRIPTOR DEVICE type 0x0000 DEVICE descriptor	Reset	15.370 ms 6330	
Transfer Control ADDR Descriptors Time 2 5 GET 2 0 GET_DESCRIPTOR DEVICE type 0x0000 DEVICE descriptor 5 999 ms 7 5 GET 2 0 GET_DESCRIPTOR DEVICE type 0x0000 DEVICE descriptor 5 999 ms 7 6 5 9 GET_DESCRIPTOR CONFIGURATION type 0x0000 CONFIGURATION descriptor 4 999 ms 7 6 7 0 GET_DESCRIPTOR CONFIGURATION type 0x0000 CONFIGURATION descriptor 4 999 ms 7 6 GET 2 0 GET_DESCRIPTOR CONFIGURATION type 0x0000 Time 4 5 GET 2 0 GET_DESCRIPTOR CONFIGURATION type 0x0000 Time 4 5 GET 2 0 GET_DESCRIPTOR CONFIGURATION type 0x0000 Time 4 5 GET 2 0 GET_DESCRIPTOR DEVICE type 0x0000 DEVICE descriptor 5 999 ms 5 5 GET		B bRequest wValue Time	
2 S GET 2 0 GET_DESCRIPTOR DEVICE type 0x0000 DEVICE descriptor 5 999 ms 3 5 GET 2 0 GET_DESCRIPTOR CONFIGURATION type 0x0000 CONFIGURATION descriptor 4 999 ms 1 1 6 GET 2 0 GET_DESCRIPTOR CONFIGURATION type 0x0000 CONFIGURATION descriptor 4 999 ms 1 1 1 1 1 0 GET_DESCRIPTOR CONFIGURATION type 0x0000 CONFIGURATION descriptors 1 1 4 999 ms 1 1 1 1 0 GET_DESCRIPTOR CONFIGURATION type 0x0000 10 descriptors 1 1 4 999 ms 1 1 1 0 GET_DESCRIPTOR CONFIGURATION type 0x0000 10 descriptors 1 1 4 999 ms 1 1 1 0 GET_DESCRIPTOR CONFIGURATION type 0x0000 10 descriptors 1 1 9 1 1 1 9 1 1 1	Transfer II Cremel ACCR File	SEI_ADDRESS[New address 2] 9.995 ms]	Time
Transfer Control ADCR EXCP DRequest wValue windex Descriptors Time 3 5 GET 2 0 GET_DESCRIPTOR CONFIGURATION type 0x0000 CONFIGURATION descriptor 4.999 ms 4 5 GET 2 0 BRequest wValue windex Descriptors Time 4 5 GET 2 0 GET_DESCRIPTOR CONFIGURATION type 0x0000 10 descriptors Time 4 5 GET 2 0 GET_DESCRIPTOR CONFIGURATION type 0x0000 10 descriptors 14.998 ms 5 5 GET 2 0 GET_DESCRIPTOR DEVICE type 0x0000 DEVICE descriptors 5.999 ms 5 5 GET 2 0 GET_DESCRIPTOR CONFIGURATION type 0x0000 10 descriptors Time 5 5 GET 2 0 GET_DESCRIPTOR CONFIGURATION type 0x0000 10 descriptors 12.998 ms 5 5 GET 2 0 GET_DESCR	2 6 GET 2 0	GET_DESCRIPTOR DEVICE type 0x0000 DEVICE descriptor 5	999 ms
Transfer F Control ADOR EXDP ERequest wValue windex Descriptors Time 4 5 GET 2 0 GET_DESCRIPTOR CONFIGURATION type 0x0000 10 descriptors 14.998 ms 7 5 5 GET 2 0 ERequest wValue windex Descriptors Time 5 5 GET 2 0 GET_DESCRIPTOR DEVICE type 0x0000 DEVICE descriptor 5 999 ms 7 5 5 GET 2 0 BRequest wValue windex Descriptors Time 5 5 GET 2 0 BRequest wValue windex Descriptors 10 descriptors 12.998 ms 7 5 GET 2 0 BRequest wValue windex Descriptors 12.998 ms 7 5 SET 2 0 BRequest wValue wValue 10 descriptors 12.998 ms 7 5 SET 2 0 SET_CONFIGURAT	Transfer F Control ADOR Erica 3 S GET 2 0	BRequest wValue winder Des GET_DESCRIPTOR CONFIGURATION type 0x0000 CONFIGURATION	ATION descriptor 4.999 ms
Transfer F Control ADCR D/D DRequest wValue windex Descriptors Time 5 5 GET 2 0 GET_DESCRIPTOR DEVICE type 0x0000 DEVICE descriptor 5 399 ms Transfer F Control ADCR ENDP DRequest wValue windex Descriptors 10 descriptors 12.996 ms Transfer F Control ADCR ENDP DRequest wValue windex Descriptors 12.996 ms Transfer F Control ADCR ENDP DRequest wValue wValue 7 S SET 2 0 SET_CONFIGURATION New configuration 1	Trahefer E Control ADDR END	BRequest wValue wIndex Descriptors GET_DESCRIPTOR CONFIGURATION type 0x0000 10 descriptor	s 14.998 ms
Transfer E Central ADDR EXCP DRequest wValue windex) Descriptors Time 6 5 GET 2 0 GET_DESCRIPTOR CONFIGURATION type 0x0000 10 descriptors 12.996 ms Transfer F Control ADDR ENDP ERequest wValue 7 S SET 2 0 SET_CONFIGURATION New configuration 1	Transfer E Control ADOR END S S GET 2 0	BRequest wValue stindes Descriptors GET DESCRIPTOR DEVICE type 0x0000 DEVICE descriptor IS	Tettel
Transfer E Control ADCR ENCR ERequest WValue 7 S SET 2 0 SET_CONFIGURATION New configuration 1	Transfor E Control ADOR END	BRequest WValue WValue Window Descriptors GET DESCRIPTOR CONFIGURATION type Dx0000 10 descriptor	Time 12.996 ms
7 SET 2 0 SET_CONFIGURATION New configuration 1		P wValue	
	7 SI SET 2 0	SET_CONFIGURATION New configuration 1	
*	For Help, press F1		

The standard descriptor types are:

- Device descriptor
- Configuration descriptor
- Interface descriptor
- Endpoint descriptor

Other descriptor types can be added corresponding to a specific USB class.

Each device is identified by a Vendor ID and a Device ID found in the device descriptor. Vendor IDs are delivered by the USB organization. Device IDs are managed by each device vendor. The device descriptor also contains information on whether the device belongs to a standard device class. The host then scans for an available driver corresponding to the Vendor ID and Product ID of the device or scans for a matching standard device class driver (e.g., mass storage driver, CDC driver, etc.) in its driver database. Microsoft stores driver information in .inf files.

For example, if the driver matches the mass storage class driver, then the device can be delivered without a specific host driver. When connected, the new device appears as a new disk mounted on the current file system.

If the device integrates extended features or does not match any class driver standard, then a host driver must be delivered.

Implementation in the
AT91xx_BasicUSBThe AT91xx_BasicUSB example is the core of the SAMBA_Boot program. Refer to the
SAMBA documentation for further information on SAMBA-Boot. This application is a
very small monitor that is waiting for a command from the host, executes it and returns
the result. This example can be used to build a powerful loader or to make the switch
from RS-232 to USB.

The device enumerates as a CDC driver to take advantage of the installed PC RS-232 software to talk over the USB. The CDC class is implemented in all releases of Windows[®], from Windows[®] 98SE to Windows[®] XP. The CDC document, available at www.usb.org, describes a way to implement devices such as ISDN modems and virtual COM ports.

The cdc_enumerate.c file in the AT91xx_BasicUSB example includes all USB elements. This file is designed to be easily integrated in another application. The interface to USP pipes is done through a read and a write method of a AT91S_CDC object described in the cdc_enumerate.h file.

Enumeration Process The USB protocol is a master/slave protocol. This is the host that starts the enumeration by sending requests to the device through the control endpoint. The device is supposed to handle standard requests as defined in the USB Specification .

Request	Definition
GET_DESCRIPTOR	This request returns the current device configuration value.
SET_ADDRESS	This request sets the device address for all future device access.
SET_CONFIGURATION	This requests sets the device configuration.
GET_CONFIGURATION	This request returns the current device configuration value.
GET_STATUS	This request returns status for the specified recipient.
SET_FEATURE	This feature is used to set or enable a specific feature.
CLEAR_FEATURE	This request is used to clear or disable a specific feature.

The device is also supposed to handle some class requests defined in the CDC class.

Request	Definition
SET_LINE_CODING	Configures DTE rate, stops bits, parity and number of character bits.
GET_LINE_CODING	Requests current DTE rate, stops bits, parity and number of character bits.
SET_CONTROL_LINE_STATE	RS-232 signal used to tell the DCE device the DTE device is now present.

Unhandled requests have to be STALLed.

A control transfer (request) is composed of three stages: the setup stage, the data stage and the status stage.

Figure 2. Different Control Transfer

Handling SETUP Transactions

Each time a new request is received by the device, the status flag corresponding to the endpoint 0 (control endpoint) is raised. The SETUP flag is set in the UDP_CSR[0] register. The application running on the device

- gets the setup packet
- acknowledges the packet clearing the SETUP flag
- decodes the request and sets the DIR flag if the next transaction is supposed to be a DATA IN transfer
- branches to the handling function.

If the request is not supported, the device must STALL the request.

Handling DATA IN TransactionsData to be sent are written in the Control endpoint FIFO through the UDP_FDR[0] register.Tonce written, the host notifies the UDP that data have been written by setting TXPKTRDY flag in the UDP_CSR[0] register. Data have been sent once TXCOMPLETE flag has been set.The function AT91F_USB_SendData() is used to handle the data IN stage of a control transaction. This function can be aborted if an anticipated DATA OUT packet has been sent by the host before all data payload has been sent to the host.

The function AT91F_USB_SendZlp() is used to send a Zero Length Packet to the host during a status stage.

- Handling Data Out Transactions Data payload received is stored in the USB FIFO. The flag RCVDATABK0 is set. Once copied by the application from the UDP_FDR[0] register, the RCVDATABK0 flag is cleared by the application.
- Validation The http://www.usb.org web site distributes a free software to test Chapter 9 implementation. This software tests the standard transactions described in Chapter 9 of the USB specification.

Figure 3. USB Command Verifier

use USBCommandVerifi	ier	×
Select Test Mode	Select Test Suite Chapter 9 Tests Current Measurement Test HID Tests Hub Tests OTG Tests	
TEST	1	EXIT

Descriptor Tables

The CDC document, available at www.usb.org, describes a way to implement devices such as ISDN modems and virtual COM ports.

In order to be considered a COM port, the USB device declares two interfaces:

- Abstract Control Model Communication through endpoint 3 (declared as interrupt IN)
- Abstract Control Model Data through endpoint 1 and endpoint 2 (declared as bulk endpoints)

```
const char devDescriptor[] = {
 /* Device descriptor */
 0x12, // bLength
 0x01,
       // bDescriptorType
 0x10, // bcdUSBL
 0x01, //
 0x02, // bDeviceClass: CDC class code
        // bDeviceSubclass: CDC class sub code
 0x00,
 0x00,
        // bDeviceProtocol: CDC Device protocol
 0x08,
        // bMaxPacketSize0
       // idVendorL
 0xEB,
       //
 0x03,
 0x24, // idProductL
 0x61, //
 0x10, // bcdDeviceL
 0x01, //
 0x00, // iManufacturer // 0x01
 0x00, // iProduct
 0x00, // SerialNumber
        // bNumConfigs
 0x01
};
const char cfgDescriptor[] = {
 /* ======== CONFIGURATION 1 ======== */
 /* Configuration 1 descriptor */
 0x09, // CbLength
 0x02,
        // CbDescriptorType
```


// CwTotalLength 2 EP + Control 0x43, 0x00, 0x02, // CbNumInterfaces 0x01, // CbConfigurationValue // CiConfiguration 0x00, // CbmAttributes 0xA0 0xC0, // CMaxPower 0x00, /* Communication Class Interface Descriptor Requirement */ 0x09, // bLength 0x04, // bDescriptorType 0x00, // bInterfaceNumber 0x00, // bAlternateSetting 0x01, // bNumEndpoints 0x02, // bInterfaceClass 0x02, // bInterfaceSubclass 0x00, // bInterfaceProtocol 0x00, // iInterface /* Header Functional Descriptor */ 0x05, // bFunction Length 0x24, // bDescriptor type: CS_INTERFACE 0x00, // bDescriptor subtype: Header Func Desc 0x10, // bcdCDC:1.1 0x01, /* ACM Functional Descriptor */ 0x04, // bFunctionLength 0x24, // bDescriptor Type: CS_INTERFACE 0x02, // bDescriptor Subtype: ACM Func Desc 0x00, // bmCapabilities /* Union Functional Descriptor */ 0x05, // bFunctionLength 0x24, // bDescriptorType: CS_INTERFACE 0x06, // bDescriptor Subtype: Union Func Desc 0x00, // bMasterInterface: Communication Class Interface 0x01, // bSlaveInterface0: Data Class Interface /* Call Management Functional Descriptor */ 0x05, // bFunctionLength 0x24, // bDescriptor Type: CS_INTERFACE 0x01, // bDescriptor Subtype: Call Management Func Desc 0x00, // bmCapabilities: D1 + D0 0x01, // bDataInterface: Data Class Interface 1 /* Endpoint 1 descriptor */ 0x07, // bLength 0x05, // bDescriptorType 0x83, // bEndpointAddress, Endpoint 03 - IN 0x03, // bmAttributes INT 0x08, // wMaxPacketSize 0x00, 0xFF, // bInterval /* Data Class Interface Descriptor Requirement */ 0x09, // bLength 0x04, // bDescriptorType 0x01, // bInterfaceNumber 0x00, // bAlternateSetting 0x02, // bNumEndpoints 0x0A, // bInterfaceClass 0x00, // bInterfaceSubclass

8 Basic USB Application

Basic USB Application

```
0x00, // bInterfaceProtocol
 0x00, // iInterface
 /* First alternate setting */
 /* Endpoint 1 descriptor */
 0x07, // bLength
 0x05, // bDescriptorType
 0x01, // bEndpointAddress, Endpoint 01 - OUT
 0x02, // bmAttributes BULK
 AT91C_EP_OUT_SIZE, // wMaxPacketSize
 0x00,
       // bInterval
 0x00,
 /* Endpoint 2 descriptor */
 0x07, // bLength
 0x05,
       // bDescriptorType
 0x82, // bEndpointAddress, Endpoint 02 - IN
 0x02, // bmAttributes
                             BULK
 AT91C_EP_IN_SIZE, // wMaxPacketSize
 0x00,
 0 \times 00
       // bInterval
};
```


USB PC Application

The device enumerates as CDC (Communication Data Class) class compliant. It is then possible to use the USBSER.sys driver provided in the standard Windows distribution or the atm6124.sys driver provided by Atmel to speed up the communication in a particular case. The driver is selected depending on which INF file is selected the first time the device is connected to the host PC.

 If atm6124ser.inf is selected, communication to the device is done using the standard Windows usbser.sys driver. In this case, a new serial COM port is added to the existing ones. It is then possible to connect using Hyperterminal or other applications interfaced with serial drivers.

Figure 4. Application Using atm6124ser.inf: Terminal Application

If atm6124.inf is selected, Windows asks for the atm6124.sys driver. The PC application must be designed to interface with this driver. To ease development, a DLL with a very simple interface is provided. A demo is delivered to illustrate driver performances. This solution is the basis of the SAMBA[™] loading solution. It is delivered for demonstration purposes as is.

Figure 5. Application Using atm6124.inf: Loader Application

To interface with CDC devices, some commercial solutions also offer performance, support and certification.

10 Basic USB Application

Terminal Application Using Standard Windows CDC Driver

Installation

The goal is to connect a standard PC application (hyperterminal) to the AT91xx_BasicUSB application running on the target. All data sent to the device is echoed.

When plugging in a new device, Windows checks all its INF files to load the appropriate driver. The INF file contains the Vendor ID (VID), the Product ID (PID), or the USB class definition. If the VID/PID or the USB Class Definition of the USB device matches with an INF file, Windows loads the driver described in this file. However, Microsoft does not provide a standard INF file for a CDC driver, so Atmel provides an INF file that allows this driver to load under Windows 2000 and Windows XP. When plugged in for the first time, the user instructs the operating system which driver to use by selecting this INF file. The application manufacturer, using its own VID/PID, modifies these values in the embedded application and the INF file provided.

[Version] DriverVer =10/06/1999,5.00.2157.0 LayoutFile=Layout.inf Signature="\$CHICAGO\$" Class=Modem ClassGUID={4D36E96D-E325-11CE-BFC1-08002BE10318} Provider=%Mfg%

[Manufacturer] %Mfg% = Models

[ControlFlags] ExcludeFromSelect=USB\VID_03EB&PID_6119

[DestinationDirs] FakeModemCopyFileSection=12 DefaultDestDir=12

[Models] %AT91MSG% = AT91SAM,USB\VID_03EB&PID_6124

[AT91SAM.NT] CopyFiles=FakeModemCopyFileSection AddReg=USB,ATMEL.resp,AT91SAM.AddReg

[AT91SAM.NT.Services] AddService=usbser, 0x00000000, LowerFilter_Service_Inst

[AT91SAM.NT.HW] AddReg=LowerFilterAddReg

[LowerFilterAddReg]
HKR,,"LowerFilters",0x00010000,"usbser"


```
[LowerFilter_Service_Inst]
DisplayName=%USBFilterString%
ServiceType= 1
StartType = 3
ErrorControl = 0
ServiceBinary = %12%\usbser.sys
```

```
[FakeModemCopyFileSection]
usbser.sys,,,0x20
```

[Strings]
Mfg = "ATMEL CORPORATION"
AT91MSG = "ATMEL AT91 USB serial emulation"
USBFilterString ="AT91 USB serial emulation"

[USB] HKR,,FriendlyDriver,,Unimodem.vxd HKR,,DevLoader,,*vcomm HKR,,ConfigDialog,,serialui.dll HKR,,AttachedTo,,COM5 HKR,,EnumPropPages,,"serialui.dll,EnumPropPages" HKR,,DeviceType, 0, 01 ; HKR,,PortSubClass,1,02

[AT91SAM.AddReg] ;AT91SAM USB serial emulation HKR,, Properties, 1, 00,00,00,00, 00,00,00, 00,00,00,00, 00,00,00, 00,00,00,00, 00,00,00, 00,c2,01,00, 00,c2,01,00

Basic USB Application

PC BasicUSB Application Using Atmel atm6124.sys Driver	In some applications, devices are driven by the host and are not supposed to return asynchronous events to the host. This is the case in the AT91xxx_BasicUSB example: the device waits for data sent by the host and replies only when requested by the host. Note: This example is the core of the SAMBA-Boot, a small monitor running on AT91 parts that waits for a command and then executes it.		
	The slot time reserved in the USB frame for an eventual asynchronous event from the device is useless. The communication with the device can be done only through two bulk endpoints plus the control endpoint. The host driver is easier and the bandwidth can be improved considerably to reach the maximum bandwith available through the USB link (~1 MByte/sec).		
atm6124.sys Driver	Only the Abstract Control Model Interface is active and communication is done through the two bulk endpoints.		
	This driver has been compiled with Windows Driver Development Kit. More information concerning Driver Development Kits can be obtained from the the Microsoft web site: http://www.microsoft.com/whdc/ddk/winddk.mspx		
	When compiling user applications that interface with the driver, some libraries included in the Windows driver development Kit are required (ex. SetupDiEnumDeviceInterfaces() functions, etc.).		
PC BasicUSB Application Demo	The goal of this demo it to automatically detect any new boards connected and to start a new task for each board that generates a USB transfer.		

Figure 6. Application Snapshot

🖾 "C:\Documents and Settings\odebicki\Mes documents\Software\Developement\dev_05\AT915AM75 💶 🗖 🗙
-I- Add device 1 -I- New device connected Ø
Device 00 Transfered 363 Bytes/s Active: Y
Device 00 Transfered 1963 Bytes/s Active: Y
Device 00 Transfered 2967 Bytes/s Active: Y
Device 00 Transfered 3456 Bytes/s Active: Y -I- Add device 2 -I- New device connected 1
Device 01 Transfered 363 Bytes/s Active: Y Device 00 Transfered 4441 Bytes/s Active: Y
Device 01 Transfered 1963 Bytes/s Active: Y Device 00 Transfered 5394 Bytes/s Active: Y -E- Write operation to device 0 failed -I- Device 0 not responding: closed
Device Ø1 Transfered 2967 Bytes/s Active: Y Device ØØ Transfered 5776 Bytes/s Active: N
Device Ø1 Transfered 3456 Bytes/s Active: Y

This is a multi-thread application developped under Microsoft Visual C++[®] V6.0. The main thread scans all new devices connected, calling the GetUsbDeviceListName() function. This function belongs to the USBlibrary.dll. Each time a new device is detected, a new child thread (DeviceThread()) is started. This thread sends a random buffer to the

	device and reads it back to compare what has been sent and received. If the read or write funtion abort, the thread is stopped. If no connection is active, the application stops.		
	To ease the demonstration, the random buffer generated by the GenerateBuffer() function is supposed to be non-null and data must not be a multiple of a data payload.		
Installation	To use this example, copy atmusb6124.inf in the Windows C:\WINNT\inf directory and atmusb6124.sys in the Windows C:\WINNT\system32\drivers directory. The first time the USB device is connected, the host PC asks for an driver installation file (.inf file). The atmusb6124.sys driver is associated with this device. The PC application is then ready to communicate. This is the same driver used by the SAMBA application.		
Interface to USBlibrary.dll	To ease PC application development, a communication DLL is provided. The final appli- cation just has to be linked with this DLL and the Windows DDK build utility is not required.		
	The interface of the USBLibrary.dll is defined in the USBLibrary.h file:		
	<pre>int GetUsbDeviceListName(char** deviceList); // Get list of connected devices</pre>		
	class CFCPipeUSB {		
	HANDLE m_hPipeIn; // Handel of the input file		
	HANDLE m_hPipeOut; // Handel of the output file		
	public :		
	CFCPipeUSB();		
	short Open(char *sDeviceName); // Open the communication		
	<pre>short Close(); // Close the communication</pre>		
	<pre>short ReadPipe(LPVOID pBuffer, ULONG ulBufferSize); // Read a buffer of data</pre>		
	short WritePipe(LPVOID pBuffer, ULONG ulBufferSize); // Write a buffer of data		

};

The library USBLibrairy.dll provides one function GetUsbDeviceListName and one class CFCPipeUSB.

The function *GetUsbDeviceListName* returns the number of connected devices and completes the list of device names in the *deviceList* buffer. The *deviceList* buffer is allocated by the DLL. The structure returned is the following:

```
(char**) deviceList
-> (char*) Name of Device 1 '\0'
-> (char*) Name of Device 2 '\0'
-> (char*) Name of Device 3 '\0'
-> (char*) ...
```

It is then possible to associate a *CFCPipeUSB* instance with each connected device. Through each pipe it is possible to perform read and write operations.

If pipe operations are aborted because the device does not answer, a timeout occurs and error code is returned.

Document Details

Version A	Publication Date: 16-Sep-04
Revision History	
Literature Number	6123
Title	Basic USB Application

Atmel Corporation

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 487-2600

Regional Headquarters

Europe

Atmel Sarl Route des Arsenaux 41 Case Postale 80 CH-1705 Fribourg Switzerland Tel: (41) 26-426-5555 Fax: (41) 26-426-5500

Asia

Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimshatsui East Kowloon Hong Kong Tel: (852) 2721-9778 Fax: (852) 2722-1369

Japan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581

Atmel Operations

Memory

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 436-4314

Microcontrollers

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 436-4314

La Chantrerie BP 70602 44306 Nantes Cedex 3, France Tel: (33) 2-40-18-18-18 Fax: (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards

Zone Industrielle 13106 Rousset Cedex, France Tel: (33) 4-42-53-60-00 Fax: (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA Tel: 1(719) 576-3300 Fax: 1(719) 540-1759

Scottish Enterprise Technology Park Maxwell Building East Kilbride G75 0QR, Scotland Tel: (44) 1355-803-000 Fax: (44) 1355-242-743

RF/Automotive

Theresienstrasse 2 Postfach 3535 74025 Heilbronn, Germany Tel: (49) 71-31-67-0 Fax: (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA Tel: 1(719) 576-3300 Fax: 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/ High Speed Converters/RF Datacom

Avenue de Rochepleine BP 123 38521 Saint-Egreve Cedex, France Tel: (33) 4-76-58-30-00 Fax: (33) 4-76-58-34-80

Literature Requests www.atmel.com/literature

Disclaimer: Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company's standard warranty which is detailed in Atmel's Terms and Conditions located on the Company's web site. The Company assumes no responsibility for any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel's products are not authorized for use as critical components in life support devices or systems.

© Atmel Corporation 2004. All rights reserved. Atmel[®], the Atmel logo and combinations thereof are the registered trademarks, and Everywhere You Are[™] and SAMBA[™] are the trademarks of Atmel Corporation or its subsidiaries. Microsoft[®], Windows[®] and Visual C^{++®} are the registered trademarks of Microsoft Corporation. Other terms and product names may be the trademarks of others.

