Basic USB Application

Scope

The Universal Serial Bus (USB) has been successfully implemented in most PC sys-
tems and is replacing the older parallel and serial ports. For a standard serial port,
communications are performed directly by the application running on the computer. In
order to be plug-and-play and hot-plug, the USB bus introduces a process that
uniquely identifies a device to the Host computer in order for it to learn the capabilities
of the device and to load the appropriate driver. This identification process is called
enumeration and uses a standard set of commands described in Chapter 9 of the
USB specification, “USB Device Framework”.

The USB is likely to replace other serial, parallel and game interfaces in PC and
peripheral markets. The USB organization defines how devices and interfaces using
the class or common capability are to be implemented and how developers of generic
adaptative device drivers interact with compliant implementations. Several classes are
approved and widely integrated in most popular operating systems: HID (Human Inter-
face Device), MSD (Mass Storage Device), CDC (Communication Device Class), etc.

This application note describes how to make the USB bus appear as an RS-232 inter-
face on the host PC. The source code corresponding to this application note is
delivered in the AT91xxx_BasicUSB example in the AT91 library. It includes an appli-
cation running on an AT91 demonstration board, PC drivers and a simple USB
application running on the PC.

ATMEL

Y (F)

AT91 ARM®
Thumb®
Microcontrollers

Application Note

6123A-ATARM-16-Sep-04

Applicable Documents

Reference Documents

USB Enumeration

USB Specification

AIMEL

Table 1. Applicable Documents

Owner - Reference

Denomination

ARM Document Guidelines

Ref ORG00001 Version 1.0, 16-Oct-2002

USB Specification

Universal Serial Bus Revision 2.0 Specification

CDC Specification

Class Definition for Communication Devices 1.1

Common Class Specification

Common Class Base Specification 1.0

Table 2. Reference Documents

Owner - Reference

Denomination

USB Device Port (UDP) Programmer
Datasheet

Rev. 6083B-12/04

USB Device Port Summary

Rev. 6083AS-05/04

AT91SAM7S64-Datasheet

Rev.6070A-09/04

SAMBA™ User Guide

Rev. xxxx

When a USB device is attached to or removed from the USB, the host uses a process
known as bus enumeration to identify and manage the device state changes necessary.
When a USB device is attached to a powered port, the following actions are taken:

The hub to which the USB device is now attached informs the host of the event via a
reply on its status change pipe (refer to the Section 11.12.3 of the USB specification
for more information). At this point, the USB device is in the powered state and the
port to which it is attached is disabled.

The host determines the exact nature of the change by querying the hub.

Now that the host knows the port to which the new device has been attached, the
host then waits for at least 100ms to allow completion of an insertion process and
for power at the device to become stable. The host then issues a port enable and
reset command to that port. Refer to Section 7.1.7.5 of the USB specification for
sequence of events and timings of connection through device reset.

The hub performs the required reset processing for that port (see Section 11.5.1.5
of the USB specification). When the reset signal is released, the port has been
enabled. The USB device is now in default state and can draw no more than 100 mA
from Vgys. All of its registers and states have been reset and it answers to the
default address.

The host assigns a unique address to the USB device, moving the device to the
address state.

Before the USB device receives a unique address, its Default Control Pipe is still
accessible via the default address. The host reads the device descriptor to
determine what actual maximum data payload size this USB default pipe can use.

2 Basic USB Application m——

6123A-ATARM-16-Sep-04

e B asic USB Application

Device Identification

6123A-ATARM-16-Sep-04

« The host reads the configuration information from the device by reading each
configuration zero to n-1, where n is the number of configurations. This process may
take several milliseconds to complete.

» Based on the configuration information and how the USB device will be used, the
host assigns a configuration value to the device. The device is now in the configured
state and all the endpoints in this configuration have taken their described
characteristics. The USB device may now draw the amount of Vg5 power described
in its descriptor for the selected configuration. From the device’s point of view, it is
now ready for use.

When the USB device is removed, the hub sends a notification to the host. Detaching a
device disables the port to which it had been attached. Upon receiving the detach notifi-
cation, the host will update its local topological information.

The enumeration process is used by the host when a device is attached to the USB bus.
This process allows the host to identify and manage the device.

The host sends standard requests on the default control endpoint in order to identify the
device and to load the appropriate driver (Refer to Chapter 9 of the USB Specification
for more information). The device answers each request with the corresponding descrip-
tor tables. The descriptor tables contain all the information relating to the device:
characteristics of the device and number and characteristics of each configuration, inter-
face and endpoint.

ATMEL ;

AIMEL

Figure 1. Enumeration Transfer

CATE RISH Clue P dibad 1% ot 0 Aetabydss - [ibota.inie CATE dedmailt | BEE EEE L
i ns Sehp pawmr geresr ApgEr Jeach ges Wk fisp

@|e) S| e@) 7 mie)] Fo|@ v Bl0) &

| 10 dasenglars]| 14958 e |

| 5858 ms

FIGLIRATIOMN typa | Bu00d || 19 deacnptore i 1.2 958 mo

Fin e, jimi
The standard descriptor types are:
» Device descriptor
e Configuration descriptor
* Interface descriptor
e Endpoint descriptor
Other descriptor types can be added corresponding to a specific USB class.
Each device is identified by a Vendor ID and a Device ID found in the device descriptor.
Vendor IDs are delivered by the USB organization. Device IDs are managed by each
device vendor. The device descriptor also contains information on whether the device
belongs to a standard device class. The host then scans for an available driver corre-
sponding to the Vendor ID and Product ID of the device or scans for a matching
standard device class driver (e.g., mass storage driver, CDC driver, etc.) in its driver
database. Microsoft stores driver information in .inf files.

4 Basic USB Application m——

6123A-ATARM-16-Sep-04

e B asic USB Application

Implementation in the
AT91xx_BasicUSB
Example

Enumeration Process

6123A-ATARM-16-Sep-04

For example, if the driver matches the mass storage class driver, then the device can be
delivered without a specific host driver. When connected, the new device appears as a
new disk mounted on the current file system.

If the device integrates extended features or does not match any class driver standard,
then a host driver must be delivered.

The AT91xx_BasicUSB example is the core of the SAMBA_Boot program. Refer to the
SAMBA documentation for further information on SAMBA-Boot. This application is a
very small monitor that is waiting for a command from the host, executes it and returns
the result. This example can be used to build a powerful loader or to make the switch
from RS-232 to USB.

The device enumerates as a CDC driver to take advantage of the installed PC RS-232
software to talk over the USB. The CDC class is implemented in all releases of Win-
dows®, from Windows® 98SE to Windows® XP. The CDC document, available at
www.usb.org, describes a way to implement devices such as ISDN modems and virtual
COM ports.

The cdc_enumerate.c file in the AT91xx_BasicUSB example includes all USB elements.
This file is designed to be easily integrated in another application. The interface to USP
pipes is done through a read and a write method of a AT91S_CDC object described in
the cdc_enumerate.h file.

The USB protocol is a master/slave protocol. This is the host that starts the enumeration
by sending requests to the device through the control endpoint. The device is supposed
to handle standard requests as defined in the USB Specification .

Request Definition

GET_DESCRIPTOR

This request returns the current device configuration value.

SET_ADDRESS This request sets the device address for all future device

access.

SET_CONFIGURATION This requests sets the device configuration.

GET_CONFIGURATION This request returns the current device configuration value.

GET_STATUS This request returns status for the specified recipient.

SET_FEATURE This feature is used to set or enable a specific feature.

CLEAR_FEATURE This request is used to clear or disable a specific feature.

The device is also supposed to handle some class requests defined in the CDC class.

Request Definition

SET_LINE_CODING

Configures DTE rate, stops bits, parity and number of
character bits.

GET_LINE_CODING Requests current DTE rate, stops bits, parity and number of

character bits.

SET_CONTROL_LINE_STATE | RS-232 signal used to tell the DCE device the DTE device is
now present..

Unhandled requests have to be STALLed.

ATMEL ;

AIMEL

A control transfer (request) is composed of three stages: the setup stage, the data stage
and the status stage.

Figure 2. Different Control Transfer

SETUP Stage Data Stage

Status Stage

Transaction SETUP | [pATAIN | [DATAIN | [DATAIN | | DATAIN | -

Example GetDescriptor

GetConfiguration
Transaction | seTup | [pATA OUT| [DATA OUT| [DATA OUT| [DATA OUT] - allatl
Example SetDescriptor

Transaction SETUP DATA IN

Example SetAddress
SetConfiguration

Handling SETUP Transactions

Handling DATA IN Transactions

Handling Data Out Transactions

Each time a new request is received by the device, the status flag corresponding to the
endpoint 0 (control endpoint) is raised. The SETUP flag is set in the UDP_CSR][0] regis-
ter. The application running on the device

e gets the setup packet

e acknowledges the packet clearing the SETUP flag

» decodes the request and sets the DIR flag if the next transaction is supposed to be
a DATA IN transfer

* branches to the handling function.

If the request is not supported, the device must STALL the request.

Data to be sent are written in the Control endpoint FIFO through the UDP_FDRJ[0] regis-
ter. Once written, the host notifies the UDP that data have been written by setting
TXPKTRDY flag in the UDP_CSR][0] register. Data have been sent once TXCOMPLETE
flag has been set.

The function AT91F_USB_SendData() is used to handle the data IN stage of a control
transaction. This function can be aborted if an anticipated DATA OUT packet has been
sent by the host before all data payload has been sent to the host.

The function AT91F_USB_SendZIp() is used to send a Zero Length Packet to the host
during a status stage.

Data payload received is stored in the USB FIFO. The flag RCVDATABKO is set. Once
copied by the application from the UDP_FDR][0] register, the RCVDATABKO flag is
cleared by the application.

Validation The http:\\Wwww.usb.org web site distributes a free software to test Chapter 9 implemen-
tation. This software tests the standard transactions described in Chapter 9 of the USB
specification.

6 Basic USB Application m—

6123A-ATARM-16-Sep-04

e B asic USB Application

Descriptor Tables

6123A-ATARM-16-Sep-04

Figure 3. USB Command Verifier

E UsBCommandYerifier

— Select Test Maode——

— Select Test Suite

Chapter 9 Tests

& Compliance Test Current Meazurement Test
HID Tests
Hub Tests
OTG Test
i Debug =
TEST ExIT |

The CDC document, available at www.usb.org, describes a way to implement devices
such as ISDN modems and virtual COM ports.

In order to be considered a COM port, the USB device declares two interfaces:
e Abstract Control Model Communication through endpoint 3 (declared as interrupt

IN)

* Abstract Control Model Data through endpoint 1 and endpoint 2 (declared as bulk
endpoints)

const char devDescriptor[]

/* Device descriptor */

0x12

0x01,
0x10,
0x01,
0x02

0x00,
0x00,
0x08,
OxEB,
0x03,
0x24

0x61,
0x10,
0x01,
0x00,
0x00,
0x00,
0x01

const char cfgDescriptor[]
/* o=

/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
11
/1
/1
/1
11
/1
/1
/1

bLength
bDescri pt or Type
bcdUSBL

bDevi ced ass:

bDevi ceSubcl ass:
bDevi cePr ot ocol :

bMaxPacket Si ze0O
i dvVendor L

i dProduct L
bcdDevi ceL

i Manuf act ur er
i Product

Seri al Nunber
bNuntConfi gs

CDC cl ass code
CDC cl ass sub code
CDC Devi ce protocol

/1 0x01

CONFI GURATI ON 1 =========== */

/* Configuration 1 descriptor */

0x09,
0x02,

/1

/1 CbDescri ptorType

ATMEL

CbLength

AIMEL

0x43, /1 CwTotal Length 2 EP + Control
0x00,

0x02, /] CbNum nterfaces

0x01, /1 CbConfi gurationVal ue

0x00, /1 Ci Configuration

0xCo, /] ComAttri butes OxAO

0x00, /1 CNaxPower

/* Conmmuni cation Cass Interface Descriptor Requirenent */
0x09, // bLength

0x04, // bDescri ptorType

0x00, // blnterfaceNunber

0x00, // bAlternateSetting

0x01, // bNumEndpoints

0x02, // blnterfaced ass

0x02, // blnterfaceSubcl ass

0x00, // blnterfaceProtocol

0x00, // ilnterface

/ * Header Functional Descriptor */

0x05, // bFunction Length

0x24, // bDescriptor type: CS_| NTERFACE

0x00, // bDescriptor subtype: Header Func Desc
0x10, // bcdCDC: 1.1

0x01,

/* ACM Functional Descriptor */

0x04, // bFunctionLength

0x24, // bDescriptor Type: CS_| NTERFACE
0x02, // bDescriptor Subtype: ACM Func Desc
0x00, // bnCapabilities

/* Uni on Functional Descriptor */

0x05, // bFunctionLength

0x24, // bbDescriptorType: CS_| NTERFACE

0x06, // bDescriptor Subtype: Union Func Desc

0x00, // bMasterlnterface: Comunication dass Interface
0x01, // bSlavelnterface0: Data C ass Interface

/* Call Managenment Functional Descriptor */

0x05, // bFunctionLength

0x24, // bDescriptor Type: CS_| NTERFACE

0x01, // bDescriptor Subtype: Call Managenment Func Desc
0x00, // bnCapabilities: D1 + DO

0x01, // bDatalnterface: Data Class Interface 1

/* Endpoint 1 descriptor */

0x07, /1 bLength

0x05, /1 bDescri ptor Type

0x83, /1 bEndpoi nt Address, Endpoint 03 - IN

0x03, /] bmAttributes I NT
0x08, /1 wivhxPacket Si ze
0x00,

OxFF, [/ blnterval

/* Data Class Interface Descriptor Requirenment */
0x09, // bLength

0x04, // bDescri ptorType

0x01, // blnterfaceNunber

0x00, // bAlternateSetting

0x02, // bNumEndpoints

0x0A, // blnterfaced ass

0x00, // blnterfaceSubcl ass

Basic USB Application m——
6123A-ATARM-16-Sep-04

e B asic USB Application

6123A-ATARM-16-Sep-04

0x00, // blnterfaceProtoco
0x00, // ilnterface

/* First alternate setting */

/* Endpoint 1 descriptor */

0x07, /1 bLength

0x05, /1 bDescri ptor Type

0x01, /1 bEndpoi nt Address, Endpoint 01 - QUT

0x02, /1l bmAttributes BULK
AT91C EP_QUT_SIZE, // wMaxPacket Si ze
0x00,

0x00, // blnterva

/* Endpoint 2 descriptor */

0x07, /1 bLength

0x05, /1 bDescri ptor Type

0x82, /1 bEndpoi nt Address, Endpoint 02 - IN

0x02, /1l bmAttributes BULK
AT91C EP_IN SIZE, // whMaxPacket Si ze
0x00,

0x00 /1l blnterva

ATMEL ;

AIMEL

USB PC Application The device enumerates as CDC (Communication Data Class) class compliant. It is then
possible to use the USBSER.sys driver provided in the standard Windows distribution or
the atm6124.sys driver provided by Atmel to speed up the communication in a particular
case. The driver is selected depending on which INF file is selected the first time the
device is connected to the host PC.

If atm6124ser.inf is selected, communication to the device is done using the
standard Windows usbser.sys driver. In this case, a new serial COM port is added to
the existing ones. It is then possible to connect using Hyperterminal or other
applications interfaced with serial drivers.

Figure 4. Application Using atm6124ser.inf: Terminal Application

Host

PC Target Device

Hyperterm'inal

COML_,['Rs232 Drivers _
AT91xx_BasicUSB

Coms usbser.sys >

USB Link

atm6124ser.inf

e If atm6124.inf is selected, Windows asks for the atm6124.sys driver. The PC

application must be designed to interface with this driver. To ease development, a
DLL with a very simple interface is provided. A demo is delivered to illustrate driver
performances. This solution is the basis of the SAMBA™ loading solution. It is
delivered for demonstration purposes as is.

Figure 5. Application Using atm6124.inf; Loader Application

Host

PC Target Device

BasicUSB_6124.exe

l

USBlibrary.dll atm6124.sys >

USB Link

)

atm6124.inf

To interface with CDC devices, some commercial solutions also offer performance, sup-
port and certification.

10 Basic USB Application m——

6123A-ATARM-16-Sep-04

e B asic USB Application

Terminal Application
Using Standard Windows
CDC Driver

Installation

6123A-ATARM-16-Sep-04

The goal is to connect a standard PC application (hyperterminal) to the
AT91xx_BasicUSB application running on the target. All data sent to the device is
echoed.

When plugging in a new device, Windows checks all its INF files to load the appropriate
driver. The INF file contains the Vendor ID (VID), the Product ID (PID), or the USB class
definition. If the VID/PID or the USB Class Definition of the USB device matches with an
INF file, Windows loads the driver described in this file. However, Microsoft does not
provide a standard INF file for a CDC driver, so Atmel provides an INF file that allows
this driver to load under Windows 2000 and Windows XP. When plugged in for the first
time, the user instructs the operating system which driver to use by selecting this INF
file. The application manufacturer, using its own VID/PID, modifies these values in the
embedded application and the INF file provided.
[Ver si on]

DriverVer =10/06/1999, 5. 00. 2157.0

Layout Fi | e=Layout . i nf

Si gnat ur e=" $CH CAGCS"

Cl ass=Mbdem

Cl assGUl D={ 4D36E96D- E325- 11CE- BFC1- 08002BE10318}
Provi der =% g%

[Manuf act urer]
%V g% = Model s

[Cont rol Fl ags]
Excl udeFr ontsel ect =USB\ VI D_03EB&PI D 6119

[Destinati onDirs]
FakeModentCopyFi | eSecti on=12
Def aul t Dest Di r=12

[Model s]
YATILMSG% = AT91SAM USB\ VI D_03EB&PI D 6124

[AT91SAM NT]
CopyFi | es=FakeMbdentCopyFi | eSecti on

AddReg=USB, ATMEL. r esp, AT91SAM AddReg

[AT91SAM NT. Ser vi ces]
AddSer vi ce=ushser, 0x00000000, LowerFilter_Service_lnst

[AT91SAM NT. HW
AddReg=Lower Fi | t er AddReg

[Lower Fi | t er AddReqg]
HKR, , "Lower Fi | t ers", 0x00010000, "ushser"

ATMEL i

12

AIMEL

[Lower Fil ter_Service_lnst]

Di spl ayNanme=%JSBFi | ter Stri ng%
Servi ceType= 1

Start Type = 3

ErrorControl =0

Servi ceBi nhary = %42% usbser. sys

[FakeModenCopyFi | eSecti on]
usbser. sys, ,, 0x20

[Strings]
M g = "ATMEL CORPORATI ON'
AT91MSG = "ATMEL AT91 USB seri al

USBFi I terString ="AT91 USB seri al

[USB]

HKR, , Fri endl yDri ver, , Uni nrodem vxd

HKR, , DevLoader, , *vconm
HKR, , Confi gDi al og, , serial ui.dll
HKR, , Att achedTo, , COVb

enul ati on"
enul ati on"

HKR, , EnunPr opPages, , "seri al ui . dl | , EnunPr opPages”

HKR, , Devi ceType, 0, 01
HKR, , Port Subd ass, 1, 02

[AT91SAM AddReg] ; AT91SAM USB serial enul ation

HKR,, Properties, 1, 00, 00, 00,00, 00, 00, 00,00, 00, 00, 00, 00,
00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00,00, 00,c2,01,00, 00,C2,01,00

Basic USB Application m——

6123A-ATARM-16-Sep-04

e B asic USB Application

PC BasicUSB
Application Using Atmel
atm6124.sys Driver

atm6124.sys Driver

PC BasicUSB Application
Demo

Figure 6. Application Snapshot

ocuments and Settings' odebicki,Mes documents Software’

—I- Add device 1

—I- Hew device connected 8

Device BA

Device B8
—I- Add device 2

—]- Hew device connected 1

Device H1
Device BAH

Device A1
Device BA
—E—- lrite operation

—I- Device B not responding: clozed

Device A1
Device B8

Device @1

In some applications, devices are driven by the host and are not supposed to return
asynchronous events to the host. This is the case in the AT91xxx_BasicUSB example:
the device waits for data sent by the host and replies only when requested by the host.

Note: This example is the core of the SAMBA-Boot, a small monitor running on AT91 parts that
waits for a command and then executes it.

The slot time reserved in the USB frame for an eventual asynchronous event from the
device is useless. The communication with the device can be done only through two
bulk endpoints plus the control endpoint. The host driver is easier and the bandwidth
can be improved considerably to reach the maximum bandwith available through the
USB link (~1 MByte/sec).

Only the Abstract Control Model Interface is active and communication is done through
the two bulk endpoints.

This driver has been compiled with Windows Driver Development Kit. More information
concerning Driver Development Kits can be obtained from the the Microsoft web site:
http://www.microsoft.com/whdc/ddk/winddk.mspx

When compiling user applications that interface with the driver, some libraries included
in the Windows driver development Kit are required (ex. SetupDiEnumDevicelnterfaces()
functions, etc.).

The goal of this demo it to automatically detect any new boards connected and to start a
new task for each board that generates a USB transfer.

Tranzfered 363 Bytezsz fActive

Transfered

Transfered
Transfered

Tranzfered 1763 Bytesss Active:

Tranzfered 5394 Bytes-s Active:
to device A failed

Transfered 2967 Bytesrss
Transfered 5776 Bytesrss

Transfered 3456 Buytes/s

6123A-ATARM-16-Sep-04

This is a multi-thread application developped under Microsoft Visual C++® V6.0. The
main thread scans all new devices connected, calling the GetUsbDeviceListName() func-
tion. This function belongs to the USBlibrary.dll. Each time a new device is detected, a
new child thread (DeviceThread()) is started. This thread sends a random buffer to the

ATMEL i

Installation

Interface to USBlibrary.dll

AIMEL

device and reads it back to compare what has been sent and received. If the read or
write funtion abort, the thread is stopped. If no connection is active, the application
stops.

To ease the demonstration, the random buffer generated by the GenerateBuffer() function
is supposed to be non-null and data must not be a multiple of a data payload.

To use this example, copy atmusb6124.inf in the Windows C:\WINNT\inf directory and
atmusb6124.sys in the Windows C:\WINNT\system32\drivers directory. The first time
the USB device is connected, the host PC asks for an driver installation file (.inf file).
The atmusb6124.sys driver is associated with this device. The PC application is then
ready to communicate. This is the same driver used by the SAMBA application.

To ease PC application development, a communication DLL is provided. The final appli-
cation just has to be linked with this DLL and the Windows DDK build utility is not
required.

The interface of the USBLibrary.dll is defined in the USBLibrary.h file:

i nt GetUsbDevi celLi st Nane(char** deviceList); // Get |ist of connected
devi ces
cl ass CFCPi peUSB {

HANDLE m hPi pel n; /1 Handel of the input file

HANDLE m hPi peCut; // Handel of the output file
public :

CFCPi peUSB() ;

short Open(char *sDeviceNane); // Open the communication

short C ose(); /1 Cose the
comuni cati on

short ReadPi pe(LPVO D pBuffer, ULONG ul BufferSize); // Read a
buffer of data

short WitePi pe(LPVO D pBuffer, ULONG ulBufferSize); // Wite a
buffer of data

I

The library USBLibrairy.dll provides one function GetUsbDeviceListName and one class
CFCPipeUSB.

The function GetUsbDevicelListName returns the number of connected devices and
completes the list of device names in the devicelList buffer. The deviceList buffer is allo-
cated by the DLL. The structure returned is the following:
(char**) deviceli st

-> (char*) Nane of Device 1 ‘\0°

-> (char*) Nane of Device 2 ‘\0’

-> (char*) Nane of Device 3 ‘\0’

-> (char*)

It is then possible to associate a CFCPipeUSB instance with each connected device.
Through each pipe it is possible to perform read and write operations.

If pipe operations are aborted because the device does not answer, a timeout occurs
and error code is returned.

14 Basic USB Application m——

6123A-ATARM-16-Sep-04

e B asic USB Application

Document Details

Title Basic USB Application

Literature Number 6123

Revision History

Version A Publication Date: 16-Sep-04

6123A-ATARM-16-Sep-04

ATMEL

15

AIMEL

Y R

Atmel Corporation

2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311

Fax: 1(408) 487-2600

Regional Headquarters

Europe
Atmel Sarl
Route des Arsenaux 41
Case Postale 80
CH-1705 Fribourg
Switzerland
Tel: (41) 26-426-5555
Fax: (41) 26-426-5500

Asia
Room 1219

Atmel Operations

Memory

2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311

Fax: 1(408) 436-4314

Microcontrollers

2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311

Fax: 1(408) 436-4314

La Chantrerie

BP 70602

44306 Nantes Cedex 3, France
Tel: (33) 2-40-18-18-18

Fax: (33) 2-40-18-19-60

RF/Automotive

Theresienstrasse 2
Postfach 3535

74025 Heilbronn, Germany
Tel: (49) 71-31-67-0

Fax: (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300

Fax: 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/
High Speed Converters/RF Datacom

Avenue de Rochepleine

BP 123

38521 Saint-Egreve Cedex, France
Tel: (33) 4-76-58-30-00

ASIC/ASSP/Smart Cards
Zone Industrielle
13106 Rousset Cedex, France
Tel: (33) 4-42-53-60-00
Fax: (33) 4-42-53-60-01

Chinachem Golden Plaza Fax: (33) 4-76-58-34-80
77 Mody Road Tsimshatsui
East Kowloon

Hong Kong

Tel: (852) 2721-9778

Fax: (852) 2722-1369
1150 East Cheyenne Mtn. Blvd.

Japan Colorado Springs, CO 80906, USA

9F, Tonetsu Shinkawa Bldg. Tel: 1(719) 576-3300
1-24-8 Shinkawa Fax: 1(719) 540-1759

Chuo-ku, Tokyo 104-0033 . ‘
Japan Scottish Enterprise Technology Park

Tel: (81) 3-3523-3551 Maxwell Building

Fax: (81) 3-3523-7581 East Kilbride G75 0QR, Scotland
Tel: (44) 1355-803-000
Fax: (44) 1355-242-743

Literature Requests
www.atmel.com/literature

Disclaimer: Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company’s standard
warranty which is detailed in Atmel’'s Terms and Conditions located on the Company’s web site. The Company assumes no responsibility for any
errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and
does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are
granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel's products are not authorized for use
as critical components in life support devices or systems.

© Atmel Corporation 2004. All rights reserved. Atmel®, the Atmel logo and combinations thereof are the registered trademarks, and Every-
where You Are™ and SAMBA™ are the trademarks of Atmel Corporation or its subsidiaries. Microsoft®, Windows® and Visual C**® are the regis-
tered trademarks of Microsoft Corporation. Other terms and product names may be the trademarks of others.

@ Printed on recycled paper.

6123A-ATARM-16-Sep-04

	Scope
	Applicable Documents
	Reference Documents

	USB Enumeration
	USB Specification
	Device Identification

	Implementation in the AT91xx_BasicUSB Example
	Enumeration Process
	Handling SETUP Transactions
	Handling DATA IN Transactions
	Handling Data Out Transactions
	Validation

	Descriptor Tables

	USB PC Application
	Terminal Application Using Standard Windows CDC Driver
	Installation

	PC BasicUSB Application Using Atmel atm6124.sys Driver
	atm6124.sys Driver
	PC BasicUSB Application Demo
	Installation
	Interface to USBlibrary.dll

	Document Details
	Title
	Literature Number
	Revision History
	Version A

