
AT91 ARM® 
Thumb® 
Microcontrollers

Application Note

6123A–ATARM–16-Sep-04
Basic USB Application

Scope 
The Universal Serial Bus (USB) has been successfully implemented in most PC sys-
tems and is replacing the older parallel and serial ports. For a standard serial port,
communications are performed directly by the application running on the computer. In
order to be plug-and-play and hot-plug, the USB bus introduces a process that
uniquely identifies a device to the Host computer in order for it to learn the capabilities
of the device and to load the appropriate driver. This identification process is called
enumeration and uses a standard set of commands described in Chapter 9 of the
USB specification, “USB Device Framework”. 

The USB is likely to replace other serial, parallel and game interfaces in PC and
peripheral markets. The USB organization defines how devices and interfaces using
the class or common capability are to be implemented and how developers of generic
adaptative device drivers interact with compliant implementations. Several classes are
approved and widely integrated in most popular operating systems: HID (Human Inter-
face Device), MSD (Mass Storage Device), CDC (Communication Device Class), etc. 

This application note describes how to make the USB bus appear as an RS-232 inter-
face on the host PC. The source code corresponding to this application note is
delivered in the AT91xxx_BasicUSB example in the AT91 library. It includes an appli-
cation running on an AT91 demonstration board, PC drivers and a simple USB
application running on the PC.



Applicable Documents

Reference Documents

USB Enumeration

USB Specification When a USB device is attached to or removed from the USB, the host uses a process
known as bus enumeration to identify and manage the device state changes necessary.
When a USB device is attached to a powered port, the following actions are taken:

• The hub to which the USB device is now attached informs the host of the event via a 
reply on its status change pipe (refer to the Section 11.12.3 of the USB specification 
for more information). At this point, the USB device is in the powered state and the 
port to which it is attached is disabled.

• The host determines the exact nature of the change by querying the hub.

• Now that the host knows the port to which the new device has been attached, the 
host then waits for at least 100ms to allow completion of an insertion process and 
for power at the device to become stable. The host then issues a port enable and 
reset command to that port. Refer to Section 7.1.7.5 of the USB specification for 
sequence of events and timings of connection through device reset.

• The hub performs the required reset processing for that port (see Section 11.5.1.5 
of the USB specification). When the reset signal is released, the port has been 
enabled. The USB device is now in default state and can draw no more than 100 mA 
from VBUS. All of its registers and states have been reset and it answers to the 
default address.

• The host assigns a unique address to the USB device, moving the device to the 
address state.

• Before the USB device receives a unique address, its Default Control Pipe is still 
accessible via the default address. The host reads the device descriptor to 
determine what actual maximum data payload size this USB default pipe can use.

Table 1.  Applicable Documents

Owner - Reference Denomination

ARM Document Guidelines Ref ORG00001 Version 1.0, 16-Oct-2002

USB Specification Universal Serial Bus Revision 2.0 Specification

CDC Specification Class Definition for Communication Devices 1.1

Common Class Specification Common Class Base Specification 1.0

Table 2.  Reference Documents

Owner - Reference Denomination

USB Device Port (UDP) Programmer 
Datasheet

Rev. 6083B-12/04

USB Device Port Summary Rev. 6083AS-05/04

AT91SAM7S64-Datasheet Rev.6070A-09/04

SAMBA™ User Guide Rev. xxxx
2 Basic USB Application
6123A–ATARM–16-Sep-04



Basic USB Application
• The host reads the configuration information from the device by reading each 
configuration zero to n-1, where n is the number of configurations. This process may 
take several milliseconds to complete.

• Based on the configuration information and how the USB device will be used, the 
host assigns a configuration value to the device. The device is now in the configured 
state and all the endpoints in this configuration have taken their described 
characteristics. The USB device may now draw the amount of VBUS power described 
in its descriptor for the selected configuration. From the device’s point of view, it is 
now ready for use.

When the USB device is removed, the hub sends a notification to the host. Detaching a
device disables the port to which it had been attached. Upon receiving the detach notifi-
cation, the host will update its local topological information.

The enumeration process is used by the host when a device is attached to the USB bus.
This process allows the host to identify and manage the device.

Device Identification The host sends standard requests on the default control endpoint in order to identify the
device and to load the appropriate driver (Refer to Chapter 9 of the USB Specification
for more information). The device answers each request with the corresponding descrip-
tor tables. The descriptor tables contain all the information relating to the device:
characteristics of the device and number and characteristics of each configuration, inter-
face and endpoint.
3
6123A–ATARM–16-Sep-04



Figure 1.  Enumeration Transfer

The standard descriptor types are:

• Device descriptor

• Configuration descriptor

• Interface descriptor

• Endpoint descriptor

Other descriptor types can be added corresponding to a specific USB class.

Each device is identified by a Vendor ID and a Device ID found in the device descriptor.
Vendor IDs are delivered by the USB organization. Device IDs are managed by each
device vendor. The device descriptor also contains information on whether the device
belongs to a standard device class. The host then scans for an available driver corre-
sponding to the Vendor ID and Product ID of the device or scans for a matching
standard device class driver (e.g., mass storage driver, CDC driver, etc.) in its driver
database. Microsoft stores driver information in .inf files.
4 Basic USB Application
6123A–ATARM–16-Sep-04



Basic USB Application
For example, if the driver matches the mass storage class driver, then the device can be
delivered without a specific host driver. When connected, the new device appears as a
new disk mounted on the current file system. 

If the device integrates extended features or does not match any class driver standard,
then a host driver must be delivered. 

Implementation in the 
AT91xx_BasicUSB 
Example

The AT91xx_BasicUSB example is the core of the SAMBA_Boot program. Refer to the
SAMBA documentation for further information on SAMBA-Boot. This application is a
very small monitor that is waiting for a command from the host, executes it and returns
the result. This example can be used to build a powerful loader or to make the switch
from RS-232 to USB.

The device enumerates as a CDC driver to take advantage of the installed PC RS-232
software to talk over the USB. The CDC class is implemented in all releases of Win-
dows®, from Windows® 98SE to Windows® XP. The CDC document, available at
www.usb.org, describes a way to implement devices such as ISDN modems and virtual
COM ports.

The cdc_enumerate.c file in the AT91xx_BasicUSB example includes all USB elements.
This file is designed to be easily integrated in another application. The interface to USP
pipes is done through a read and a write method of a AT91S_CDC object described in
the cdc_enumerate.h file.

Enumeration Process The USB protocol is a master/slave protocol. This is the host that starts the enumeration
by sending requests to the device through the control endpoint. The device is supposed
to handle standard requests as defined in the USB Specification .

The device is also supposed to handle some class requests defined in the CDC class.

Unhandled requests have to be STALLed.

Request Definition

GET_DESCRIPTOR This request returns the current device configuration value.

SET_ADDRESS This request sets the device address for all future device 
access.

SET_CONFIGURATION This requests sets the device configuration.

GET_CONFIGURATION This request returns the current device configuration value.

GET_STATUS This request returns status for the specified recipient.

SET_FEATURE This feature is used to set or enable a specific feature.

CLEAR_FEATURE This request is used to clear or disable a specific feature.

Request Definition

SET_LINE_CODING Configures DTE rate, stops bits, parity and number of 
character bits.

GET_LINE_CODING Requests current DTE rate, stops bits, parity and number of 
character bits.

SET_CONTROL_LINE_STATE RS-232 signal used to tell the DCE device the DTE device is 
now present..
5
6123A–ATARM–16-Sep-04



A control transfer (request) is composed of three stages: the setup stage, the data stage
and the status stage.

Figure 2.  Different Control Transfer

Handling SETUP Transactions Each time a new request is received by the device, the status flag corresponding to the
endpoint 0 (control endpoint) is raised. The SETUP flag is set in the UDP_CSR[0] regis-
ter. The application running on the device 

• gets the setup packet 

• acknowledges the packet clearing the SETUP flag 

• decodes the request and sets the DIR flag if the next transaction is supposed to be 
a DATA IN transfer 

• branches to the handling function. 

If the request is not supported, the device must STALL the request.

Handling DATA IN Transactions Data to be sent are written in the Control endpoint FIFO through the UDP_FDR[0] regis-
ter. Once written, the host notifies the UDP that data have been written by setting
TXPKTRDY flag in the UDP_CSR[0] register. Data have been sent once TXCOMPLETE
flag has been set.

The function AT91F_USB_SendData() is used to handle the data IN stage of a control
transaction. This function can be aborted if an anticipated DATA OUT packet has been
sent by the host before all data payload has been sent to the host.

The function AT91F_USB_SendZlp() is used to send a Zero Length Packet to the host
during a status stage.

Handling Data Out Transactions Data payload received is stored in the USB FIFO. The flag RCVDATABK0 is set. Once
copied by the application from the UDP_FDR[0] register, the RCVDATABK0 flag is
cleared by the application.

Validation The http:\\www.usb.org web site distributes a free software to test Chapter 9 implemen-
tation. This software tests the standard transactions described in Chapter 9 of the USB
specification.

SETUP DATA IN DATA IN DATA IN DATA IN DATA OUT...

SETUP DATA OUT DATA OUT DATA OUT DATA OUT DATA IN...

GetDescriptor

GetConfiguration

Example

SetDescriptorExample

SETUP DATA IN

SetAddressExample

SetConfiguration

SETUP Stage Data Stage
Status Stage

Transaction

Transaction

Transaction
6 Basic USB Application
6123A–ATARM–16-Sep-04



Basic USB Application
Figure 3.  USB Command Verifier

Descriptor Tables The CDC document, available at www.usb.org, describes a way to implement devices
such as ISDN modems and virtual COM ports.

In order to be considered a COM port, the USB device declares two interfaces: 

• Abstract Control Model Communication through endpoint 3 (declared as interrupt 
IN) 

• Abstract Control Model Data through endpoint 1 and endpoint 2 ( declared as bulk 
endpoints)
const char devDescriptor[] = {
/* Device descriptor */
0x12,   // bLength
0x01,   // bDescriptorType
0x10,   // bcdUSBL
0x01,   //
0x02,   // bDeviceClass:    CDC class code
0x00,   // bDeviceSubclass: CDC class sub code
0x00,   // bDeviceProtocol: CDC Device protocol
0x08,   // bMaxPacketSize0
0xEB,   // idVendorL
0x03,   //
0x24,   // idProductL
0x61,   //
0x10,   // bcdDeviceL
0x01,   //
0x00,   // iManufacturer    // 0x01
0x00,   // iProduct
0x00,   // SerialNumber
0x01    // bNumConfigs

};

const char cfgDescriptor[] = {

/* ============== CONFIGURATION 1 =========== */

/* Configuration 1 descriptor */
0x09,   // CbLength
0x02,   // CbDescriptorType
7
6123A–ATARM–16-Sep-04



0x43,   // CwTotalLength 2 EP + Control
0x00,
0x02,   // CbNumInterfaces
0x01,   // CbConfigurationValue
0x00,   // CiConfiguration
0xC0,   // CbmAttributes 0xA0
0x00,   // CMaxPower

/* Communication Class Interface Descriptor Requirement */
0x09, // bLength
0x04, // bDescriptorType
0x00, // bInterfaceNumber
0x00, // bAlternateSetting
0x01, // bNumEndpoints
0x02, // bInterfaceClass
0x02, // bInterfaceSubclass
0x00, // bInterfaceProtocol
0x00, // iInterface

/* Header Functional Descriptor */
0x05, // bFunction Length
0x24, // bDescriptor type: CS_INTERFACE
0x00, // bDescriptor subtype: Header Func Desc
0x10, // bcdCDC:1.1
0x01,

/* ACM Functional Descriptor */
0x04, // bFunctionLength
0x24, // bDescriptor Type: CS_INTERFACE
0x02, // bDescriptor Subtype: ACM Func Desc
0x00, // bmCapabilities

/* Union Functional Descriptor */
0x05, // bFunctionLength
0x24, // bDescriptorType: CS_INTERFACE
0x06, // bDescriptor Subtype: Union Func Desc
0x00, // bMasterInterface: Communication Class Interface
0x01, // bSlaveInterface0: Data Class Interface

/* Call Management Functional Descriptor */
0x05, // bFunctionLength
0x24, // bDescriptor Type: CS_INTERFACE
0x01, // bDescriptor Subtype: Call Management Func Desc
0x00, // bmCapabilities: D1 + D0
0x01, // bDataInterface: Data Class Interface 1

/* Endpoint 1 descriptor */
0x07,   // bLength
0x05,   // bDescriptorType
0x83,   // bEndpointAddress, Endpoint 03 - IN
0x03,   // bmAttributes      INT
0x08,   // wMaxPacketSize
0x00,
0xFF,   // bInterval

/* Data Class Interface Descriptor Requirement */
0x09, // bLength
0x04, // bDescriptorType
0x01, // bInterfaceNumber
0x00, // bAlternateSetting
0x02, // bNumEndpoints
0x0A, // bInterfaceClass
0x00, // bInterfaceSubclass
8 Basic USB Application
6123A–ATARM–16-Sep-04



Basic USB Application
0x00, // bInterfaceProtocol
0x00, // iInterface

/* First alternate setting */
/* Endpoint 1 descriptor */
0x07,   // bLength
0x05,   // bDescriptorType
0x01,   // bEndpointAddress, Endpoint 01 - OUT
0x02,   // bmAttributes      BULK
AT91C_EP_OUT_SIZE,   // wMaxPacketSize
0x00,
0x00,   // bInterval

/* Endpoint 2 descriptor */
0x07,   // bLength
0x05,   // bDescriptorType
0x82,   // bEndpointAddress, Endpoint 02 - IN
0x02,   // bmAttributes      BULK
AT91C_EP_IN_SIZE,   // wMaxPacketSize
0x00,
0x00    // bInterval

};
9
6123A–ATARM–16-Sep-04



USB PC Application The device enumerates as CDC (Communication Data Class) class compliant. It is then
possible to use the USBSER.sys driver provided in the standard Windows distribution or
the atm6124.sys driver provided by Atmel to speed up the communication in a particular
case. The driver is selected depending on which INF file is selected the first time the
device is connected to the host PC.

• If atm6124ser.inf is selected, communication to the device is done using the 
standard Windows usbser.sys driver. In this case, a new serial COM port is added to 
the existing ones. It is then possible to connect using Hyperterminal or other 
applications interfaced with serial drivers. 

Figure 4.  Application Using atm6124ser.inf: Terminal Application

• If atm6124.inf is selected, Windows asks for the atm6124.sys driver. The PC 
application must be designed to interface with this driver. To ease development, a 
DLL with a very simple interface is provided. A demo is delivered to illustrate driver 
performances. This solution is the basis of the SAMBA™ loading solution. It is 
delivered for demonstration purposes as is.

Figure 5.  Application Using atm6124.inf: Loader Application

To interface with CDC devices, some commercial solutions also offer performance, sup-
port and certification. 

Host PC

Hyperterminal

Target Device

COM1

COM5

RS232 Drivers

usbser.sys

atm6124ser.inf

USB Link

AT91xx_BasicUSB

atm6124.sys

atm6124.inf

USBlibrary.dll

BasicUSB_6124.exe

Host PC Target Device

USB Link
10 Basic USB Application
6123A–ATARM–16-Sep-04



Basic USB Application
Terminal Application 
Using Standard Windows 
CDC Driver

The goal  is  to connect a standard PC appl icat ion (hyperterminal )  to the
AT91xx_BasicUSB application running on the target. All data sent to the device is
echoed.

Installation When plugging in a new device, Windows checks all its INF files to load the appropriate
driver. The INF file contains the Vendor ID (VID), the Product ID (PID), or the USB class
definition. If the VID/PID or the USB Class Definition of the USB device matches with an
INF file, Windows loads the driver described in this file. However, Microsoft does not
provide a standard INF file for a CDC driver, so Atmel provides an INF file that allows
this driver to load under Windows 2000 and Windows XP. When plugged in for the first
time, the user instructs the operating system which driver to use by selecting this INF
file. The application manufacturer, using its own VID/PID, modifies these values in the
embedded application and the INF file provided.

[Version]

DriverVer =10/06/1999,5.00.2157.0

LayoutFile=Layout.inf

Signature="$CHICAGO$"

Class=Modem

ClassGUID={4D36E96D-E325-11CE-BFC1-08002BE10318}

Provider=%Mfg%

[Manufacturer]

%Mfg% = Models

[ControlFlags]

ExcludeFromSelect=USB\VID_03EB&PID_6119

[DestinationDirs]

FakeModemCopyFileSection=12

DefaultDestDir=12

[Models]

%AT91MSG% = AT91SAM,USB\VID_03EB&PID_6124

[AT91SAM.NT]

CopyFiles=FakeModemCopyFileSection

AddReg=USB,ATMEL.resp,AT91SAM.AddReg

[AT91SAM.NT.Services]

AddService=usbser, 0x00000000, LowerFilter_Service_Inst

[AT91SAM.NT.HW]

AddReg=LowerFilterAddReg

[LowerFilterAddReg]

HKR,,"LowerFilters",0x00010000,"usbser"
11
6123A–ATARM–16-Sep-04



[LowerFilter_Service_Inst]

DisplayName=%USBFilterString%

ServiceType= 1

StartType  = 3

ErrorControl = 0

ServiceBinary = %12%\usbser.sys

[FakeModemCopyFileSection]

usbser.sys,,,0x20

[Strings]

Mfg   = "ATMEL CORPORATION"

AT91MSG = "ATMEL AT91 USB serial emulation"

USBFilterString ="AT91 USB serial emulation"

[USB]

HKR,,FriendlyDriver,,Unimodem.vxd

HKR,,DevLoader,,*vcomm

HKR,,ConfigDialog,,serialui.dll

HKR,,AttachedTo,,COM5

HKR,,EnumPropPages,,"serialui.dll,EnumPropPages"

HKR,,DeviceType, 0, 01      ; 

HKR,,PortSubClass,1,02

[AT91SAM.AddReg]  ;AT91SAM USB serial emulation

HKR,, Properties, 1, 00,00,00,00, 00,00,00,00, 00,00,00,00, 
00,00,00,00, 00,00,00,00, 00,00,00,00, 00,c2,01,00, 00,C2,01,00
12 Basic USB Application
6123A–ATARM–16-Sep-04



Basic USB Application
PC BasicUSB 
Application Using Atmel 
atm6124.sys Driver

In some applications, devices are driven by the host and are not supposed to return
asynchronous events to the host. This is the case in the AT91xxx_BasicUSB example:
the device waits for data sent by the host and replies only when requested by the host. 
Note: This example is the core of the SAMBA-Boot, a small monitor running on AT91 parts that

waits for a command and then executes it. 

The slot time reserved in the USB frame for an eventual asynchronous event from the
device is useless. The communication with the device can be done only through two
bulk endpoints plus the control endpoint. The host driver is easier and the bandwidth
can be improved considerably to reach the maximum bandwith available through the
USB link (~1 MByte/sec).

atm6124.sys Driver Only the Abstract Control Model Interface is active and communication is done through
the two bulk endpoints. 

This driver has been compiled with Windows Driver Development Kit. More information
concerning Driver Development Kits can be obtained from the the Microsoft web site:
http://www.microsoft.com/whdc/ddk/winddk.mspx

When compiling user applications that interface with the driver, some libraries included
in the Windows driver development Kit are required (ex. SetupDiEnumDeviceInterfaces()
functions, etc.).

PC BasicUSB Application 
Demo

The goal of this demo it to automatically detect any new boards connected and to start a
new task for each board that generates a USB transfer. 

Figure 6.  Application Snapshot

This is a multi-thread application developped under Microsoft Visual C++® V6.0. The
main thread scans all new devices connected, calling the GetUsbDeviceListName() func-
tion. This function belongs to the USBlibrary.dll. Each time a new device is detected, a
new child thread (DeviceThread()) is started. This thread sends a random buffer to the
13
6123A–ATARM–16-Sep-04



device and reads it back to compare what has been sent and received. If the read or
write funtion abort, the thread is stopped. If no connection is active, the application
stops.

To ease the demonstration, the random buffer generated by the GenerateBuffer() function
is supposed to be non-null and data must not be a multiple of a data payload.

Installation To use this example, copy atmusb6124.inf in the Windows C:\WINNT\inf directory and
atmusb6124.sys in the Windows C:\WINNT\system32\drivers directory. The first time
the USB device is connected, the host PC asks for an driver installation file (.inf file).
The atmusb6124.sys driver is associated with this device. The PC application is then
ready to communicate. This is the same driver used by the SAMBA application.

Interface to USBlibrary.dll To ease PC application development, a communication DLL is provided. The final appli-
cation just has to be linked with this DLL and the Windows DDK build utility is not
required. 

The interface of the USBLibrary.dll is defined in the USBLibrary.h file:

int GetUsbDeviceListName(char** deviceList); // Get list of connected 
devices

class  CFCPipeUSB {

    HANDLE m_hPipeIn;     // Handel of the input file

    HANDLE m_hPipeOut;  // Handel of the output file

public :

    CFCPipeUSB();

    short Open(char *sDeviceName); // Open the communication

    short Close();                                 // Close the 
communication

    short ReadPipe(LPVOID pBuffer, ULONG ulBufferSize); // Read a 
buffer of data

    short WritePipe(LPVOID pBuffer, ULONG ulBufferSize); // Write a 
buffer of data

};

The library USBLibrairy.dll provides one function GetUsbDeviceListName and one class
CFCPipeUSB.

The function GetUsbDeviceListName returns the number of connected devices and
completes the list of device names in the deviceList buffer. The deviceList buffer is allo-
cated by the DLL. The structure returned is the following:

(char**) deviceList

-> (char*) Name of Device 1 ‘\0‘
-> (char*) Name of Device 2 ‘\0’
-> (char*) Name of Device 3 ‘\0’
-> (char*) ...

It is then possible to associate a CFCPipeUSB instance with each connected device.
Through each pipe it is possible to perform read and write operations.

If pipe operations are aborted because the device does not answer, a timeout occurs
and error code is returned.
14 Basic USB Application
6123A–ATARM–16-Sep-04



Basic USB Application
Document Details

Title Basic USB Application

Literature Number 6123

Revision History

Version A Publication Date: 16-Sep-04
15
6123A–ATARM–16-Sep-04



 Printed on recycled paper.

Disclaimer: Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company’s standard
warranty which is detailed in Atmel’s Terms and Conditions located on the Company’s web site. The Company assumes no responsibility for any
errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and
does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are
granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel’s products are not authorized for use
as critical components in life support devices or systems.

Atmel Corporation Atmel Operations

2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

Regional Headquarters

Europe
Atmel Sarl
Route des Arsenaux 41
Case Postale 80
CH-1705 Fribourg
Switzerland
Tel: (41) 26-426-5555
Fax: (41) 26-426-5500

Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369

Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

Memory
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314

Microcontrollers
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314

La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
Tel: (33) 2-40-18-18-18
Fax: (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards
Zone Industrielle
13106 Rousset Cedex, France
Tel: (33) 4-42-53-60-00
Fax: (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759

Scottish Enterprise Technology Park
Maxwell Building
East Kilbride G75 0QR, Scotland 
Tel: (44) 1355-803-000
Fax: (44) 1355-242-743

RF/Automotive
Theresienstrasse 2
Postfach 3535
74025 Heilbronn, Germany
Tel: (49) 71-31-67-0
Fax: (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/
High Speed Converters/RF Datacom

Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex, France
Tel: (33) 4-76-58-30-00
Fax: (33) 4-76-58-34-80

Literature Requests
www.atmel.com/literature

6123A–ATARM–16-Sep-04

© Atmel Corporation 2004. All rights reserved. Atmel®, the Atmel logo and combinations thereof are the registered trademarks, and Every-
where You Are™ and SAMBA™ are the trademarks of Atmel Corporation or its subsidiaries. Microsoft®, Windows® and Visual C++® are the regis-
tered trademarks of Microsoft Corporation. Other terms and product names may be the trademarks of others.


	Scope
	Applicable Documents
	Reference Documents

	USB Enumeration
	USB Specification
	Device Identification

	Implementation in the AT91xx_BasicUSB Example
	Enumeration Process
	Handling SETUP Transactions
	Handling DATA IN Transactions
	Handling Data Out Transactions
	Validation

	Descriptor Tables


	USB PC Application
	Terminal Application Using Standard Windows CDC Driver
	Installation

	PC BasicUSB Application Using Atmel atm6124.sys Driver
	atm6124.sys Driver
	PC BasicUSB Application Demo
	Installation
	Interface to USBlibrary.dll



	Document Details
	Title
	Literature Number
	Revision History
	Version A



